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References

* The most recent UML Specification from the
Object Management Group (OMG)

https://www.omg.org/spec/UML/
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* By the Object Management Group (OMG)

— Version 1.0 in January 1997 | S et S
* A graphical way of describing software systems

— FEasy to read and understand the system prior to coding

— Independent of programming language

— Facilitates communication between developers
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Unified Modeling Languége
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Unified Modeling Languége

 UML Sketching
— Communicate or rough out ideas; look at alternative approaches
e UML Blueprint '

— Detailed, including design decisions
* Model-Driven Architecture

— Platform independent OR platform specific
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UML Class Diagram

* A static structure diagram showing the systems classes and thelr
relationships

* C(lasses are represented with boxes that have three compartments:

fer )
BankAccount <4— (Class Name

-accountNumber: 1int .
-owner: string <— Attributes

-balance: Dollars

+deposit(amount: Dollars)

+withdrawal(amount: Dollars)
G .

g Operations

h.



UML Class Diagram
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* The class name is bold and centered; the first letter is capitalized

* Attributes are left-aligned; the first case is lower case

e QOperations are left-aligned; the first letter is lower case

h.
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BankAccount
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<€4— (Class Name

-accountNumber: 1int
-owner: string
-balance: Dollars

<4— Attributes

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

g Operations
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UML Class Diagram

* C(lasses are represented with boxes that have three compartments

— Attributes in object oriented programming are called fields (basically variables)

— Qperations in object oriented programming are called methods

h.
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Attributes (Fields)

* Significant piece of data containing Values that descrlbe each
instance of that class.

* Also known as: variables, states, or properties

fer )
BankAccount <4— (Class Name

-accountNumber: 1int .
-owner: string <— Attributes

-balance: Dollars

+deposit(amount: Dollars)

+withdrawal(amount: Dollars)
G .
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h.



Operations (Methods)

* Specify behavioral features of a class.

. | | ‘

— What an object can do, or what can be done to it

* Also known as: behaviors or functions

h.
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-accountNumber: 1int
-owner: string
-balance: Dollars

<4— Attributes

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)
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Visibility

* Sets the accessibility for field or method.

+

~J

#

public — accessible to all

package (default) — accessible by classes within the same package
protected — accessible by the class and subclasses

private — only accessible within the class

» Attributes (fields) generally should be private or protected

h.




Multiplicity of Attributes (Fields)

* Rules for attributes that will represent a group of objects
~  For a list with the number of elements in a range:
-parents: Person[0..2] // between zero and two" parents
~ For a list with an unknown number of elements:
-friends: Person[*] // zero or more friends

-friends: Person[1..*] // one or more friends -

h.
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-friends: Person[*] {unique} //alternatively {notUnique}

— If the list should be ordered
-siblings: Person[*] {ordered}

Multiplicity of Attributes (Fields)

* Rules for attributes that will represent a group of objects

— For a set where elements are unique (a mathematical set)

h.
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Scope of Attributes and Operations

* Two types of scope for members:

— Class members, represented by underlined names

* One attribute is shared by all instances
* Operations cannot affect the state of instance attributes
— Instance members, not underlined

* Attributes may vary between instances
* Operations may affect that instance’s state (change the attrlbutes)

' Class members are typically referred to as static in object- orlented

rogramming languages.




Relationship: Compositio‘n

3 : Animal
* When a class contains an object [ . ]
_ L+name: string J
* The contained class cannot exist without the JaN
parent (example: no Breed without a Dog)
2 : . ; e N
* Shown w1.th a connection with (" Enclosure ) o Dog
a closed diamond, ¢, on the ey ant | e=tealtnane e E FEURG
TR : b d: B d
containing class il e | sencs Encludis
\_ 3 5/
dos
1.
L ( ‘Breed

L+name; string J

h.




Relationship: Aggregatioh

Animal

; +name: string
* The contained class can exist without the parent JaN
(example: Enclosure without any Dog)

* When a class contains an object {

. L ) NP

s )

) Dog

 Shown as a connection with an ( Enclosure

open diamond, ¢, on the Py . e R L2 BFRRTIRTE
t a0 1 e T o e +breed: Breed
containing class : v |\ +enc: Enclosure |
1.%
Lo
O ( ‘Breed

L+name; string J

h.



Relationship: Aggregatidn

; ; | Animal
* When a class contains an object [ . ]
_ L+name: string J
* The contained class can exist without the parent 7aN
(example: Enclosure without any Dog)
: : ; “
e Shown as a connection withan [ Enclosure | % Dog
open diamond, <>, on the +number: int Oio +name: string
taini ] +size: real +breed: Breed
containing class  tanimals: list | _ tenc: Enclosure
* Note: composition and aggregation relationships s
may be bidirectional ;
‘Breed

L+nameﬁ_string J

h.



Relationship: Inheritance

* When a class (the subclass) is derived from (man':}nli':?rling ]
another class (the superclass) as the base L o 7 J

* Fields and methods of the superclass are
inherited by the subclass, if - x - Dog x

Enclosure
public, protected, or = 1 0. _ :
+number: int |k>— " +name: string
package/default. +size: real +breed: Breed
. i +animals: list) k+enc: Enclosure o
e Show as a connection with an
arrow with an open arrow head St
1> e
& [ Breed

L+nameﬁ_string J

h.



Abstract Classes

e An abstract class has the class name in italics

These classes cannot be instantiated

— Here, the Animal class is an abstract class

h.

Enclosure
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+number: int
+size: real

+animals: list)

( Animal
L+name: string

JAN

Nae el o/

Dog

+name: string
+breed: Breed
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Constraints

* Define rules for parts of classes.

— Linked with a dotted line

amu?® self.name ->notEmpty()
- name: String 1" .
- breed : Breed

context Customer :: setBalance
(newBal:double):void

e o L k] —
] balance:double{balance>=0} pre 'thr‘:l‘l""u ” "q
& ' .,. : i i e ":. =
I setBalance(newBal:double):void B POSUDRIRICE v100
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Object Constraint Language (OCL)

Standard way of creating constraints

Data Types: Boolean, Integer, Real, String
Arithmetic: +, -, *, /, a->mod(b), abs(), min(), max()
Comparson: <, >, €=, >=, =, <>

Boolean: and, or, xor, not
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Interfaces contain only abstract methods. Attributes are either
static or constants

Use either ball notation or the stereotype

O <<interface>>
, Animal
Animal

-eat(): voud

- eat(): void : 5
. - noise():void

- noise():void
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