

Topic 9: JavaScript
Unified Modeling Language (UML)

Class Diagrams

A-Level Information Technology

Lecture Contents

● References
● UML Basics
● UML Class Diagrams

– Attributes
– Operations
– Visibility
– Multiplicity
– Relationships

References

● The most recent UML Specification from the
Object Management Group (OMG)

https://www.omg.org/spec/UML/

Unified Modeling Language

● By the Object Management Group (OMG)
– Version 1.0 in January 1997

● A graphical way of describing software systems
– Easy to read and understand the system prior to coding
– Independent of programming language
– Facilitates communication between developers

Unified Modeling Language

● Evolution

Unified Modeling Language

● UML Sketching
– Communicate or rough out ideas; look at alternative approaches

● UML Blueprint
– Detailed, including design decisions

● Model-Driven Architecture
– Platform independent OR platform specific

UML Diagrams

Class
Diagram

Component
Diagram

Object
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State
Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram Notation: UML

Interaction
Diagram

Behaviour
Diagram

Diagram

Structure
Diagram

UML Diagrams

Class
Diagram

Component
Diagram

Object
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State
Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram Notation: UML

Interaction
Diagram

Behaviour
Diagram

Diagram

Structure
Diagram

UML Class Diagram

● A static structure diagram showing the systems classes and their
relationships

● Classes are represented with boxes that have three compartments:

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations

UML Class Diagram

● The class name is bold and centered; the first letter is capitalized
● Attributes are left-aligned; the first case is lower case
● Operations are left-aligned; the first letter is lower case

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations

UML Class Diagram

● Classes are represented with boxes that have three compartments
– Attributes in object oriented programming are called fields (basically variables)

– Operations in object oriented programming are called methods

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations

Attributes (Fields)

● Significant piece of data containing values that describe each
instance of that class.

● Also known as: variables, states, or properties

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations

Operations (Methods)

● Specify behavioral features of a class.
– What an object can do, or what can be done to it

● Also known as: behaviors or functions

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations

Visibility

● Sets the accessibility for field or method.

+ public – accessible to all

~ package (default) – accessible by classes within the same package

protected – accessible by the class and subclasses

– private – only accessible within the class

● Attributes (fields) generally should be private or protected

Multiplicity of Attributes (Fields)

● Rules for attributes that will represent a group of objects
– For a list with the number of elements in a range:

 –parents: Person[0..2] // between zero and two parents

– For a list with an unknown number of elements:

 –friends: Person[*] // zero or more friends

 –friends: Person[1..*] // one or more friends

Multiplicity of Attributes (Fields)

● Rules for attributes that will represent a group of objects
– For a set where elements are unique (a mathematical set)

 –friends: Person[*] {unique} //alternatively {notUnique}

– If the list should be ordered
 –siblings: Person[*] {ordered}

Scope of Attributes and Operations

● Two types of scope for members:

– Class members, represented by underlined names
● One attribute is shared by all instances
● Operations cannot affect the state of instance attributes

– Instance members, not underlined
● Attributes may vary between instances
● Operations may affect that instance’s state (change the attributes)

● Class members are typically referred to as static in object-oriented
programming languages.

Relationship: Composition

● When a class contains an object
● The contained class cannot exist without the

parent (example: no Breed without a Dog)
● Shown with a connection with

a closed diamond, ♦, on the
containing class

Animal

+name: string

Enclosure

+number: int
+size: real

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1

Relationship: Aggregation

● When a class contains an object
● The contained class can exist without the parent

(example: Enclosure without any Dog)
● Shown as a connection with an

open diamond, ◊, on the
containing class

Animal

+name: string

Enclosure

+number: int
+size: real

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1

Relationship: Aggregation

● When a class contains an object
● The contained class can exist without the parent

(example: Enclosure without any Dog)
● Shown as a connection with an

open diamond, ◊, on the
containing class

● Note: composition and aggregation relationships
may be bidirectional

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1

Relationship: Inheritance

● When a class (the subclass) is derived from
another class (the superclass) as the base

● Fields and methods of the superclass are
inherited by the subclass, if
public, protected, or
package/default.

● Show as a connection with an
arrow with an open arrow head

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1

Abstract Classes

● An abstract class has the class name in italics
– These classes cannot be instantiated

– Here, the Animal class is an abstract class

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1

Constraints

● Define rules for parts of classes.
– Linked with a dotted line

Topic 9: JavaScript
Unified Modeling Language (UML)

Class Diagrams

A-Level Information Technology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

