A-Level Information Technology - :
UNIFIED o
| MODELING =
LANGUAGE ¢

Topic 9: JavaScript |

Unified Modeling Language (UML)
Class Diagrams

Lecture Contents

e References
e UML Basics
 UML Class Diagrams

Attributes
Operations
Visibility
Multiplicity
Relationships

- i -I

References

* The most recent UML Specification from the
Object Management Group (OMG)

https://www.omg.org/spec/UML/

Unified Modeling Languége

- -
ST

-
-
g
=

=

2

-
aﬁff
=

* By the Object Management Group (OMG)

— Version 1.0 in January 1997 | S et S
* A graphical way of describing software systems

— FEasy to read and understand the system prior to coding

— Independent of programming language

— Facilitates communication between developers

B
?;:1:}/- =

-.

Unified Modeling Languége

State Charts | Harel 1987

(Ada/Booch)

. Booch OOSA
° (RDD
EVOIUUOD 1990 | f—— Wirfs-Brock Shlaer’Mellor
Booch '91 OMT
Methodologies Rumbauph u.a, OOSE
proliferate Booch '93 Jacobsen Gibson/Goldberg Coad/Yourdon
Fusion
Y Y OODA
Booch (omT '94 N _(OOSE 94 EOIHED Martin/Odell
Rumbaugh Y
1995 OOPSLA '95| UM 0.8
. 1
Mature practice 3 5inos
gos" [UML 0.9
(UML 0.9] Y Graham Henderson-Selle
1997 Accepted by OMG Nov. 97 [UML 1.1 I‘:I'l}esaicr)rrl1 OPEN/OML ijD
Standardization FL,lnified Colemanu.a. Open-Group
roce
Accepted by 1SO Okt.2000 [UML 1.3 RUP-"_OEP
Published Nov. 2000 (UML 1.4
March 2003 | UML 1.5
2005 2005(UML 2.0
Language Emﬁﬁﬁme“
Sroliarals 2007(_UML 2.1.2

2008 | UML 2.2

(xUML)

(SysML 1.1) (BPMN 1.1)

- i

Unified Modeling Languége

 UML Sketching
— Communicate or rough out ideas; look at alternative approaches
e UML Blueprint '

— Detailed, including design decisions
* Model-Driven Architecture

— Platform independent OR platform specific

h.

UML Diagrams Di“;”“’”

Behaviour
Diagram

i

State
Machine
Diagram

Composite
Structure

Diagram

Structure
Diagram

D e

Interaction
Overview
Diagram

~

Class Component Object
Diagram Diagram Diagram
Profile
Diagram '

Notation: UML

Deployment Package
Diagram Diagram

UML Diagrams %

Behaviour . Structure
Diagram ' Diagram

Class Component Object
Diagram Diagram Diagram
Composite Deployment Package Profile
Structure Diagram Diagram Diagram |~
Diagram !

Interaction Sequence Timing
Overview Diagram Diagram
Diagram

State
Machine
Diagram

Notation: UML

UML Class Diagram

* A static structure diagram showing the systems classes and thelr
relationships

* C(lasses are represented with boxes that have three compartments:

fer)
BankAccount <4— (Class Name

-accountNumber: 1int .
-owner: string <— Attributes

-balance: Dollars

+deposit(amount: Dollars)

+withdrawal(amount: Dollars)
G .

g Operations

h.

UML Class Diagram

. | | ‘

* The class name is bold and centered; the first letter is capitalized

* Attributes are left-aligned; the first case is lower case

e QOperations are left-aligned; the first letter is lower case

h.

e

BankAccount

~\

<€4— (Class Name

-accountNumber: 1int
-owner: string
-balance: Dollars

<4— Attributes

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

g Operations

w,

UML Class Diagram

* C(lasses are represented with boxes that have three compartments

— Attributes in object oriented programming are called fields (basically variables)

— Qperations in object oriented programming are called methods

h.

e

BankAccount

~\

<€4— (Class Name

-accountNumber: 1int
-owner: string
-balance: Dollars

<4— Attributes

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

g Operations

w,

. | | ‘

Attributes (Fields)

* Significant piece of data containing Values that descrlbe each
instance of that class.

* Also known as: variables, states, or properties

fer)
BankAccount <4— (Class Name

-accountNumber: 1int .
-owner: string <— Attributes

-balance: Dollars

+deposit(amount: Dollars)

+withdrawal(amount: Dollars)
G .

g Operations

h.

Operations (Methods)

* Specify behavioral features of a class.

. | | ‘

— What an object can do, or what can be done to it

* Also known as: behaviors or functions

h.

r

BankAccount

<€4— (Class Name

-accountNumber: 1int
-owner: string
-balance: Dollars

<4— Attributes

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

g Operations

w,

Visibility

* Sets the accessibility for field or method.

+

~J

#

public — accessible to all

package (default) — accessible by classes within the same package
protected — accessible by the class and subclasses

private — only accessible within the class

» Attributes (fields) generally should be private or protected

h.

Multiplicity of Attributes (Fields)

* Rules for attributes that will represent a group of objects
~ For a list with the number of elements in a range:
-parents: Person[0..2] // between zero and two" parents
~ For a list with an unknown number of elements:
-friends: Person[*] // zero or more friends

-friends: Person[1..*] // one or more friends -

h.

- i

-friends: Person[*] {unique} //alternatively {notUnique}

— If the list should be ordered
-siblings: Person[*] {ordered}

Multiplicity of Attributes (Fields)

* Rules for attributes that will represent a group of objects

— For a set where elements are unique (a mathematical set)

h.

- | | -\

Scope of Attributes and Operations

* Two types of scope for members:

— Class members, represented by underlined names

* One attribute is shared by all instances
* Operations cannot affect the state of instance attributes
— Instance members, not underlined

* Attributes may vary between instances
* Operations may affect that instance’s state (change the attrlbutes)

' Class members are typically referred to as static in object- orlented

rogramming languages.

Relationship: Compositio‘n

3 : Animal
* When a class contains an object [.]
_ L+name: string J
* The contained class cannot exist without the JaN
parent (example: no Breed without a Dog)
2 : . ; e N
* Shown w1.th a connection with (" Enclosure) o Dog
a closed diamond, ¢, on the ey ant | e=tealtnane e E FEURG
TR : b d: B d
containing class il e | sencs Encludis
_ 3 5/
dos
1.
L (‘Breed

L+name; string J

h.

Relationship: Aggregatioh

Animal

; +name: string
* The contained class can exist without the parent JaN
(example: Enclosure without any Dog)

* When a class contains an object {

. L) NP

s)

) Dog

 Shown as a connection with an (Enclosure

open diamond, ¢, on the Py . e R L2 BFRRTIRTE
t a0 1 e T o e +breed: Breed
containing class : v |\ +enc: Enclosure |
1.%
Lo
O (‘Breed

L+name; string J

h.

Relationship: Aggregatidn

; ; | Animal
* When a class contains an object [.]
_ L+name: string J
* The contained class can exist without the parent 7aN
(example: Enclosure without any Dog)
: : ; “
e Shown as a connection withan [Enclosure | % Dog
open diamond, <>, on the +number: int Oio +name: string
taini] +size: real +breed: Breed
containing class tanimals: list | _ tenc: Enclosure
* Note: composition and aggregation relationships s
may be bidirectional ;
‘Breed

L+nameﬁ_string J

h.

Relationship: Inheritance

* When a class (the subclass) is derived from (man':}nli':?rling]
another class (the superclass) as the base L o 7 J

* Fields and methods of the superclass are
inherited by the subclass, if - x - Dog x

Enclosure
public, protected, or = 1 0. _ :
+number: int |k>— " +name: string
package/default. +size: real +breed: Breed
. i +animals: list) k+enc: Enclosure o
e Show as a connection with an
arrow with an open arrow head St
1> e
& [Breed

L+nameﬁ_string J

h.

Abstract Classes

e An abstract class has the class name in italics

These classes cannot be instantiated

— Here, the Animal class is an abstract class

h.

Enclosure

~\

\.

+number: int
+size: real

+animals: list)

(Animal
L+name: string

JAN

Nae el o/

Dog

+name: string
+breed: Breed

-k+enc: Enclosure

J

e

Lo
‘Breed

L+name¢_string J

Constraints

* Define rules for parts of classes.

— Linked with a dotted line

amu?® self.name ->notEmpty()
- name: String 1" .
- breed : Breed

context Customer :: setBalance
(newBal:double):void

e o L k] —
] balance:double{balance>=0} pre 'thr‘:l‘l""u ” "q
& ' .,. : i i e ":. =
I setBalance(newBal:double):void B POSUDRIRICE v100

R T T i

Object Constraint Language (OCL)

Standard way of creating constraints

Data Types: Boolean, Integer, Real, String
Arithmetic: +, -, *, /, a->mod(b), abs(), min(), max()
Comparson: <, >, €=, >=, =, <>

Boolean: and, or, xor, not

S T DT B T T -

Interfaces contain only abstract methods. Attributes are either
static or constants

Use either ball notation or the stereotype

O <<interface>>
, Animal
Animal

-eat(): voud

- eat(): void : 5
. - noise():void

- noise():void

2
"

A-Level Information Technology : : -
® UNIFIED

MODELING
LANGUAGE

C

’ ™ .
OBJECT MANAGEMENT GROUP

Topic 9: JavaScript |

Unified Modeling Language (UML)
Class Diagrams

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

