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References

● The most recent UML Specification from the 
Object Management Group (OMG)

https://www.omg.org/spec/UML/



  

Unified Modeling Language

● By the  Object Management Group (OMG)
– Version 1.0 in January 1997

● A graphical way of describing software systems
– Easy to read and understand the system prior to coding
– Independent of programming language
– Facilitates communication between developers



  

Unified Modeling Language

● Evolution



  

Unified Modeling Language

● UML Sketching
– Communicate or rough out ideas; look at alternative approaches

● UML Blueprint
– Detailed, including design decisions

● Model-Driven Architecture
– Platform independent OR platform specific
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UML Class Diagram

● A static structure diagram showing the systems classes and their 
relationships

● Classes are represented with boxes that have three compartments:

BankAccount

-accountNumber: int

-balance: Dollars

+deposit(amount: Dollars)
+withdrawal(amount: Dollars)

-owner: string

Class Name

Attributes

Operations



  

UML Class Diagram

● The class name is bold and centered; the first letter is capitalized
● Attributes are left-aligned; the first case is lower case
● Operations are left-aligned; the first letter is lower case
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UML Class Diagram

● Classes are represented with boxes that have three compartments
– Attributes in object oriented programming are called fields (basically variables)

– Operations in object oriented programming are called methods
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Attributes (Fields)

● Significant piece of data containing values that describe each 
instance of that class.

● Also known as: variables, states, or properties
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Operations (Methods)

● Specify behavioral features of a class.
– What an object can do, or what can be done to it

● Also known as: behaviors or functions
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Visibility

● Sets the accessibility for field or method.

+    public – accessible to all

~    package (default) – accessible by classes within the same package

#    protected – accessible by the class and subclasses

–    private – only accessible within the class

● Attributes (fields) generally should be private or protected



  

Multiplicity of Attributes (Fields)

● Rules for attributes that will represent a group of objects
– For a list with the number of elements in a range:

 –parents: Person[0..2]   // between zero and two parents

– For a list with an unknown number of elements:

 –friends: Person[*]     // zero or more friends

 –friends: Person[1..*]  // one or more friends



  

Multiplicity of Attributes (Fields)

● Rules for attributes that will represent a group of objects
– For a set where elements are unique (a mathematical set)

 –friends: Person[*] {unique}  //alternatively {notUnique}

– If the list should be ordered
 –siblings: Person[*] {ordered}



  

Scope of Attributes and Operations

● Two types of scope for members:

– Class members, represented by underlined names
● One attribute is shared by all instances
● Operations cannot affect the state of instance attributes

– Instance members, not underlined
● Attributes may vary between instances
● Operations may affect that instance’s state (change the attributes)

● Class members are typically referred to as static in object-oriented 
programming languages. 



  

Relationship: Composition

● When a class contains an object
● The contained class cannot exist without the 

parent (example: no Breed without a Dog)
● Shown with a connection with

a closed diamond, ♦, on the
containing class

Animal

+name: string

Enclosure

+number: int
+size: real

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1



  

Relationship: Aggregation

● When a class contains an object
● The contained class can exist without the parent 

(example: Enclosure without any Dog)
● Shown as a connection with an

open diamond, ◊, on the
containing class

Animal

+name: string

Enclosure

+number: int
+size: real

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1



  

Relationship: Aggregation

● When a class contains an object
● The contained class can exist without the parent 

(example: Enclosure without any Dog)
● Shown as a connection with an

open diamond, ◊, on the
containing class

● Note: composition and aggregation relationships 
may be bidirectional

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1



  

Relationship: Inheritance

● When a class (the subclass) is derived from 
another class (the superclass) as the base

● Fields and methods of the superclass are 
inherited by the subclass, if
public, protected, or
package/default.

● Show as a connection with an
arrow with an open arrow head

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1



  

Abstract Classes

● An abstract class has the class name in italics
– These classes cannot be instantiated

– Here, the Animal class is an abstract class

Animal

+name: string

Enclosure

+number: int
+size: real
+animals: list

Breed

+name: string

Dog

+name: string
+breed: Breed
+enc: Enclosure

0..*

1..*

1

1



  

Constraints

● Define rules for parts of classes.
– Linked with a dotted line
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